"Inverse-electron-demand" ligand substitution: experimental and computational insights into olefin exchange at palladium(0).
نویسندگان
چکیده
The mechanism of olefin substitution at palladium(0) has been studied, and the results provide unique insights into the fundamental reactivity of electron-rich late transition metals. A systematic series of bathocuproine-palladium(0) complexes bearing trans-beta-nitrostyrene ligands (ns(X) = X-C(6)H(4)CH=CHNO(2); X = OCH(3), CH(3), H, Br, CF(3)), (bc)Pd(0)ns(X) (3(X)), was prepared and characterized, and olefin-substitution reactions of these complexes were found to proceed by an associative mechanism. In cross-reactions between (bc)Pd(ns(CH)()3) and ns(X) (X = OCH(3), H, Br, CF(3)), more-electron-deficient olefins react more rapidly (relative rate: ns(CF)()3 > ns(Br) > ns(H) > ns(OCH)()3). Density functional theory calculations of model alkene-substitution reactions at a diimine-palladium(0) center reveal that the palladium center reacts as a nucleophile via attack of a metal-based lone pair on the empty pi orbital of the incoming olefin. This orbital picture contrasts that of traditional ligand-substitution reactions, in which the incoming ligand donates electron density into an acceptor orbital on the metal. On the basis of these results, olefin substitution at palladium(0) is classified as an "inverse-electron-demand" ligand-substitution reaction.
منابع مشابه
"Inverse-electron-demand" ligand substitution in palladium(0)-olefin complexes.
Ligand substitution reactions are ubiquitous in transition-metal chemistry and catalysis. Investigation of ligand substitution reactions for a series of electron-rich palladium(0)-olefin complexes, (bathocuproine)Pd(nitrostyrene) reveals an unprecedented mechanism in which the metal serves as the nucleophilic partner in an "associative" substitution pathway.
متن کاملOn the mechanism of the palladium(II)-catalyzed decarboxylative olefination of arene carboxylic acids. Crystallographic characterization of non-phosphine palladium(II) intermediates and observation of their stepwise transformation in Heck-like processes.
Mechanistic studies of a palladium-mediated decarboxylative olefination of arene carboxylic acids are presented, providing spectroscopic and, in two instances, crystallographic evidence for intermediates in a proposed stepwise process. Sequentially, the proposed pathway involves carboxyl exchange between palladium(II) bis(trifluoroacetate) and an arene carboxylic acid substrate, rate-determinin...
متن کاملA remarkable cis- and trans-spanning dibenzylidene acetone diphosphine chelating ligand (dbaphos).
A multidentate and flexible diolefin-diphosphine ligand, based on the dibenzylidene acetone core, namely dbaphos (1), is reported herein. The ligand adopts an array of different geometries at Pt, Pd and Rh. At Pt(II) the dbaphos ligand forms cis- and trans-diphosphine complexes and can be defined as a wide-angle spanning ligand. (1)H NMR spectroscopic analysis shows that the β-hydrogen of one o...
متن کاملApplication of Pd-Substituted Ni-Al Layered Double Hydroxides for the Hydrogen Evolution Reaction
Clean production of hydrogen from electrochemical water splitting has been known as a green method of fuel production. In this work, electrocatalytic hydrogen evolution reaction (HER) was investigated at new prepared layered double hydroxides (LDH) in acidic solution. NiAl/carbon black (CB) LDH was monitored using x-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, scannin...
متن کاملOn the mechanism of the palladium-catalyzed β-arylation of ester enolates.
The palladium-catalyzed β-arylation of ester enolates with aryl bromides was studied both experimentally and computationally. First, the effect of the ligand on the selectivity of the α/β-arylation reactions of ortho- and meta-fluorobromobenzene was described. Selective β-arylation was observed for the reaction of o-fluorobromobenzene with a range of biarylphosphine ligands, whereas α-arylation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 126 45 شماره
صفحات -
تاریخ انتشار 2004